

2015 Marking Scheme

Mark Required		% candidates achieving grade		
(/ ₈₀)	%	% candidates achieving grade		
56+	70%+	46.1%		
48+	60%+	19.8%		
40+	50%+	15.7%		
36+	%40+	5.0%		
< 36	<40%	13.4%		
	(/ ₈₀) 56+ 48+ 40+ 36+	(/ ₈₀) % 56+ 70%+ 48+ 60%+ 40+ 50%+ 36+ %40+		

Section:	Multiple Cho	ice	Extended Answer		
Average Mark:	22.5	/30	30.8	/50	

	2015 Int2 Chemistry Marking Scheme							
MC Qu	Answer	% Pupils Correct	Reasoning					
1	С	94	 A water is a compound of hydrogen and oxygen with formula H₂O B methane is a compound of carbon and hydrogen with formula CH₄ C fluorine is a diatomic element with formula F₂ D ammonia is a compound of nitrogen and hydrogen with formula NH₃ 					
2	С	93	▲A zinc is a transition metal different chemical properties to group 0 argon ▲B potassium is in group 1 different chemical properties to group 0 argon ④C krypton and argon have same chemical properties as they are both in group 0 ▲D chlorine is in group 7 different chemical properties to group 0 argon					
3	A	86	Gas in AirNitrogenOxygenCarbon DioxideNoble Gases% in Air78%21%0.03%1%					
4	В	83	 ☑A Solute: the substance which is dissolved ☑B Solvent: the liquid which does the dissolving ☑C Solution: the mixture formed when solute dissolves in solvent ☑D Saturated: a solution where no more solute can dissolve in the solvent 					
5	С	60	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{1.00 - 0.25}{25 - 0}$ = $\frac{0.75}{25}$ = 0.03mol l ⁻¹ s ⁻¹					
6	D	89	 A magnesium powder is faster than magnesium ribbon B magnesium powder is faster than magnesium ribbon C 4mol l⁻¹ hydrochloric acid is faster than 2mol l⁻¹ hydrochloric acid D 2mol l⁻¹ hydrochloric acid and magnesium ribbon would be the slowest reaction 					
7	D	84	\mathbf{X} A the number of protons + neutrons is the mass number (not the atomic number) \mathbf{X} B the number of neutrons is independent of the number of protons and electrons \mathbf{X} C the number of neutrons is independent of the number of protons and electrons \mathbf{V} D atoms are neutral as number of protons = number of electrons					
8	В	95	 ☑ A halogens are in group 7 and have 7 outer electrons ☑ B noble gases are in group 0 and have 8 outer electrons (except helium with 2) ☑ C alkali metals are in group 1 and have 1 outer electron ☑ D transition metals have a variety of outer electrons, usually 2 					
9	В	68	Iron nitrate Nitrate ions have the formula formula per iron nitrate ions iron ion must have 3+ charge to balance charge Fe(NO _3)_3 NO_3^- Fe ⁿ⁺ (NO_3^-)_3 Fe ³⁺ (NO_3^-)_3					
10	A	87	$ \blacksquare A \ gfm \ SO_2 = (1 \times 32) + (2 \times 16) = 32 + 32 = 64g \therefore mass = n \times gfm = 0.2 \times 64 = 12.8g $ $ \blacksquare B \ 1mol \ CO = (1 \times 12) + (1 \times 16) = 12 + 16 = 28g \therefore mass = n \times gfm = 0.2 \times 28 = 5.6g $ $ \blacksquare C \ 1mol \ CO_2 = (1 \times 12) + (2 \times 16) = 12 + 32 = 44g \therefore mass = n \times gfm = 0.2 \times 44 = 8.8g $ $ \blacksquare D \ 1mol \ NH_3 = (1 \times 14) + (3 \times 1) = 14 + 1 = 17g \therefore mass = n \times gfm = 0.2 \times 17 = 3.4g $					
11	С	49	$2AI + CuSO_4 \longrightarrow 3Cu + AI_2(SO_4)_3$ $2mol \qquad 3mol$ $1mol \qquad 1.5mol$					
12	A	48	 A nitrogen dioxide is formed by the sparking of air to join nitrogen and oxygen B carbon monoxide is formed by the incomplete combustion of fuel C carbon (soot) is formed by the incomplete combustion of fuel D unburnt hydrocarbons is formed by the incomplete combustion of fuel 					
13	В	38	Property Petroleum Gas Gasoline Kerosene Light gas Oil Heavy Gas Oil Residue Viscosity Low Image: Comparison of the second se					

14 A 85 $\frac{C_{nH_{2n-4}} + C_{4H_{(2x4)-4}} = C_{4H_4}}{C_{nH_{2n}} + C_{5H_{(2x5)-4}} = C_{5H_6}} + C_{6H_4}}{C_{nH_{2n}} + C_{4H_{(2x4)}} = C_{4H_8}} + C_{5H_{(2x5)}} = C_{5H_{10}}} + C_{6H_4}}{C_{6H_4}}$ $E A \text{ longest chain is this structure is 4 carbons } \therefore \text{ name ends in but}}$	$\frac{\text{if } n=6}{(2\times 6)-2} = C_6H_{10}$ $\frac{(2\times 6)-4}{(2\times 6)-4} = C_6H_8$
14 A 85 $\frac{C_{n}H_{2n-4}}{C_{n}H_{2n-4}} = C_{4}H_{4} + C_{5}H_{(2\times5)-4} = C_{5}H_{6} + C_{6}H_{(2\times5)-4} = C_{5}H_{6} + C_{6}H_{(2\times5)-4} = C_{5}H_{10} + C_{6}H_{(2\times5)+2} = C_{5}H_{10} + C_{6}H_{(2\times5)+2} = C_{5}H_{12} + C_{6}H_{(2\times5)+2} + C_{6}H_{(2\times5)+$	$_{(2\times 6)-4} = C_6 H_8$
$\frac{C_{n}H_{2n}}{C_{n}H_{2n+2}} = \frac{C_{4}H_{(2\times4)} = C_{4}H_{8}}{C_{5}H_{(2\times5)} = C_{5}H_{10}} = \frac{C_{6}H_{10}}{C_{6}H_{12}}$ $\frac{\mathbb{E}A \text{ longest chain is this structure is 4 carbons } \therefore \text{ name ends in but}}{\mathbb{E}A \text{ longest chain is this structure is 4 carbons } \therefore \text{ name ends in but}}$	
C_nH_{2n+2} $C_4H_{(2\times4)+2} = C_4H_{10}$ $C_5H_{(2\times5)+2} = C_5H_{12}$ $C_6H_{(2\times5)+2}$ \blacksquare A longest chain is this structure is 4 carbons \therefore name ends in but \blacksquare A longest chain is this structure is 4 carbons \therefore name ends in but	
■ A longest chain is this structure is 4 carbons name ends in but	$I_{(2\times 6)} = C_6 H_{12}$ (2×6)+2 = C ₆ H ₁₄
15 C 51 $\square C$ longest chain is this structure is 4 carbons \therefore name ends in but $\square C$ longest chain of 4 carbons and 1 carbon sidegroup on C_2 \therefore 2-me	
Image: Interpretent and the set of	•
\blacksquare S A structure drawn a molecular formula of C ₆ H ₁₄ but heptane has	
TO attractions drawn has formula Citil and a different attractions (
16 B 82 \boxtimes structure drawn has formula C_7H_{16} and a different structure f $\boxtimes C$ structure drawn a molecular formula of C_7H_{14} but heptane has	•
\blacksquare D structure drawn a molecular formula of C_6H_{12} but heptane has	formula C7H16
A cyclopentane C5H10 does not decolourise bromine solution as it	
IVD systementane C Lt. door not fit the company formula C Lt	
17 D 75 $\mathbb{E}C$ pentane C_5H_12 does not decolourise bromine solution as it has n	no C=C bond
\square D pentene C_5H_{10} decolourises bromine solution and fits general for	ormula CnH2n
$ 18 B 94 C_{22}H_{46} \longrightarrow C_{10}H_{22} + C_8H_{16} + C_{46} C_{10}H_{22} + C_8H_{16} C_{10}H_{22} + C_8H_{16} C_{10}H_{22} C_{10}H_{22}$	4 H 8
A Fermentation: glucose broken down into ethanol and CO2 in ana	aerobic conditions
19 A 61 B Combustion: substance burns and elements join with oxygen	
19 A 61 EC Condensation: two molecules join together with water removed	l at the join
Image: Second systemImage: Second sy	and oxygen
A Polystyrene is an addition polymer used in corner packaging	
20 C 90 B Nylon is a polyamide used in used in durable plastics e.g. toothe	
· · · · · · · · · · · · · · · · · · ·	'y bags
Image: Construction of the second s	· · · · · · · · · · · · · · · · · · ·
	ΗΗ
21 A 76 C=C -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	C-C-I
	CH₃H
	Repeating Unit
\blacksquare A C ₆ H ₆ O is not a carbohydrate as the ratio of H:O is not 2:1 (as	in water)
22 D 83 \mathbb{B} B C ₆ H ₆ O ₆ is not a carbohydrate as the ratio of H:O is not 2:1 (as \mathbb{R} C C ₆ H ₈ O ₆ is not a carbohydrate as the ratio of H:O is not 2:1 (as	•
\square	water)
$H = \dot{C} = O = C = C_{17}H_{35}$ $H = \dot{C} = \dot{C}$	_ LJ
	- 11
ОНОНОН	
23 C 79 H-C-O-C-C ₁₇ H ₃₅ \longrightarrow OH OH OH $giycerol$	ol
$\begin{bmatrix} 23 & C & 79 & H-C-O-C-C_{17}H_{35} & \xrightarrow{f} & f^{glycero} \\ Q & 3H_2O & O \\ \end{bmatrix}$	
$H-C-O-C-C_{17}H_{35}$ 3x $H-O-C-C_{17}H_{35}$	H25
Fat/Oil 3 fatty ac	
H Fairoin Starry at	

		r	
24	В	83	 A carbon dioxide is a non-metal oxide which dissolves in water to form an acid B copper oxide is not soluble in water and would not change the pH of water c sodium oxide is a metal oxide which dissolves in water to form an alkali b sulphur dioxide is a non-metal oxide which dissolves in water to form an acid
25	В	55	 Sodium carbonate + hydrochloric acid sodium chloride + water + carbon dioxide Sodium chloride does not react with hydrochloric acid as it is not a base Sodium hydroxide + hydrochloric acid sodium chloride + water Sodium oxide + hydrochloric acid sodium chloride + water
26	С	55	 A copper metal does not react with dilute acid as copper is below hydrogen in ECS B copper oxide + hydrochloric acid copper chloride + water copper carbonate + hydrochloric acid copper chloride + water + carbon dioxide copper hydroxide + hydrochloric acid copper chloride + water
27	A	97	ビA hydrogen burns with a pop EB oxygen relights a glowing splint EC hydrogen chloride and sulphur dioxide turn damp pH paper red ED carbon dioxide turns limewater milky
28	D	73	 ☑A ammonium nitrate NH₄NO₃ contains the element nitrogen ☑B ammonium sulphate (NH₄)₂SO₄ contains the element nitrogen ☑C potassium nitrate KNO₃ contains the element nitrogen ☑D potassium sulphate K₂SO₄ cannot be used as a fertiliser as it lacks nitrogen
29	С	79	 ☑ A addition: a molecule adds across a C=C double bond ☑ B neutralisation: acid (H⁺ ions) react with a base to form water (H₂O) ☑ C precipitation: an insoluble of solid is formed during reaction ☑ D redox: a reaction where transfer of electrons takes place during reaction
30	A	58	 ☑ A calcium forms as a solid on the surface due to density and melting point. ☑ B calcium is a solid as it melts at 842°C and the temperature used is 800°C ☑ C Calcium formed on surface as it has a lower density than calcium chloride ☑ D Calcium formed on surface as it has a lower density than calcium chloride

	2015 Int2 Chemistry Marking Scheme							
Long Qu	Answer	Reasoning						
1a	126	no. of neutrons = mass number - atomic number = 210 - 84 = 126						
1b	Answer from:	Same atomic number but different mass number Same number of protons but different number of neutrons						
1c	225-235 days	Time when radioactivity = 100cpm is 0 days Time when radioactivity = 210cpm is 230 days ∴time for radioactivity to fall from 100cpm to 20cpm = 230 - 0 = 230 day						
2a	tetrahedral	Chloroform $CHCl_3$ has the same shape as methane CH_4 H - Cl H						
2h(1)	weak	The bonds inside molecules are covalent bonds which are strong						
2b(i)	strong	bonds. The bonds between molecules are not covalent bonds and these bonds are much easier to overcome so they are weak bonds.						
2b(ii)	One answer from:	Chlorine has stronger attraction for electronsChlorine pulls electrons moreElectrons not shared equallyHydrogen less attraction for electronsHydrogen pull electrons lessDifferent electronegativitiesAttraction for the (bonded) electrons is different						
За	Diagram completed as shown:	(concentrated) <u>hydrochloric acid</u> (concentrated) <u>water sulphuric acid chlorine</u>						
3b	CI CI	Each chlorine atom has 7 electrons of its own and shares an electron with another chlorine to achieve a stable full outer shell of 8 electrons.						
4 a	(A substance which) burns to produce energy	A fuel is a substance which burns to produce energy. Oxygen gas is required for any substance to burn						
4 b(i)	sodium hydroxide or sodium oxide	NaH + H2O H2 + NaOH or 2NaH + H2O 2H2 + Na2O						
4b(ii)	Na⁺H⁻	Sodium is a group 1 metal so forms an sodium ion with formula Na ⁺ The negative ion to balance this is the hydride ion will formula H ⁻ . The cross over rule would give the formula NaH as both ions have a valency of one.						
5a	covalent or covalent molecular	Titanium chloride is a compound containing a metal and a non-metal. This would normally form an ionic compound. However, ionic compounds are all solids at room temperature with high melting points but titanium chloride is a liquid at room temperature. Metallic bonding can be ruled out as it is a compound so (molecular) covalent is left due to the low melting and boiling points.						

5b(i)	TiCl₄ + 4Na ↓ Ti + 4NaCl	TiCl₄ + 4Na → Ti + 4NaCl
5b(ii)	Titanium is less reactive than sodium	More reactive metals will displace lower down metals from their ions/ compounds. Sodium is more reactive than titanium as the sodium metal becomes sodium ions and titanium in the compound is becoming the metal to accept the electrons released by the sodium as it become ions.
5b(iii)	Unreactive atmosphere or no oxygen to react	Sodium is a very reactive metal which must be kept away from oxygen or water so it would not react before the intended reaction. Argon is an unreactive gas and would prevent sodium from reacting.
6a	propan-2-ol	Propan -2- ol 3 carbons -OH on C -OH functional group
6b(i)	ННН H—С—С—С—Н ННОН	H H H H H H H H H H H H H H H H H H H
6b(ii)	addition or hydration	Addition reactions happen when as small molecule adds directly across a carbon to carbon double bond. Cl2, F2, Br2, I2, H2, H2O, HCl, HBr, HF and HI are all capable of adding across a double bond.
7a (i)	serine	The apple juice has separated into two spots on the chromatogram, one of the spots corresponds to serine.
7 a(ii)	One answer from:	Not enough amino acids samplesNot one of amino acids tested forSpots didn't match up/line upIts higher than the known amino acidsIt doesn't reach to known amino acidsDifferent amino acidTravelled different distance to known amino acids
7b	amide link or peptide link	$\begin{array}{c} O \\ \\ -C - OH \\ carboxyl group \end{array} + \begin{array}{c} H \\ H - N \\ amine group \end{array} \xrightarrow[water removed]{} condensation \\ water removed \\ at join \end{array} + \begin{array}{c} O \\ \\ H \\ -C - N \\ amide/peptide link \end{array}$
8a	Carboxyl	−O−H → C − OH hydroxyl group hydroxyl group
8b(i)	Condensation (polymerisation)	Polymerisation Description Addition Monomers with C=C double bonds open up the double bonds and join together to make a long polymer with single C-C bonds. Condensation Monomers with two functional groups (usually -OH, -COOH or -NH2) join together to make a polymer with a small molecule like water removed at every join.

8b(ii)	Diagram showing:	НН ОННО U U U -O-C-C-O-C-C-C- U U U -O-C-C-O-C-C-C- НН НН					
9a	Supply energy		Type o Fats Carbohy Prot	/Oil /drates	Use in Bo for energy for energy for growth and	97 97	
9b	Oils are more unsaturated or oils have more double bonds	Any answer from: Oils have greater unsaturation compared to fats Oils are unsaturated Fats are greater saturation compared to oils		Fats have less carbon to carbon double bonds Oils have more unsaturation Fats have more saturation		Oils have more carbon to carbon double bonds Fats are saturated Fats have less unsaturation	
9с	heterogenous	Type of (Homoge Heterog	eneous		Definition Catalyst in same. state as re Catalyst in different state from		
10a	hydrolysis	Esters are made from an alcohol and a carboxylic acid by a condensation reaction where water is removed as they join. Esters are broken down by a hydrolysis reaction where water is added back into the molecule as it splits to form an alcohol and a carboxylic a			er is added		
10Ь	н H—С—ОН Н	$H \qquad O \qquad H \qquad $					
11a	Any answer from:	(of sodium chloride) (of sod		ne) volume ^{lium chloride} . mol l ⁻¹ lution	(same) size of r	netals	lumber of moles temperature a of metals
11b(i)	Any answer from:	The greater the difference in reactivity (between the metals) the greater the voltageThe more reactive, the less the voltageMetals close to Mg on the Electrochemical Series will produce lower voltageThe less reactive the metal, the greater the voltage					
11b(ii)	Value greater than 2.25	Magnesium and Lead produce a voltage of 2.25V. Magnesium and Copper will produce a bigger voltage because Copper is lower on the electrochemical series than Lead. There is a greater voltage in a Magnesium/Copper cell than Magnesium/Lead cell.					
11c	Complete the circuit or allow ions to move	The ionic solution of sodium chloride provide the ions needed to complete the circuit. Ions move to balance the charge in the cell caused by the movement of electrons through the wires from the magnesium electrode to the lead electrode.					
12a	One from:			eave it ove		vsill Use	a Bunsen

		1mol CuSO ₄ = (1x63.5)+(1x32)+(4x16)=63.5+32+64 = 159.5g					
12b	0.2	n o of mol = $\frac{mass}{gfm}$ = $\frac{3.19}{159.5}$ = 0.02mol					
		c oncentration = $\frac{\mathbf{n}o \text{ of mol}}{\mathbf{v}olume}$ = $\frac{0.02 \text{mol}}{0.1 \text{litres}}$ = 0.2mol l ⁻¹					
	Aluminium sacrificially	If the aluminium layer comes into contact with the iron layer underneath,					
13a	protects steel <u>or</u> aluminium loses	the Aluminium will corrode to protect the less reactive iron due to sacrificial protection. The electrons released by the corrosion of					
	electrons to steel	aluminium will travel to the iron to protect the iron from corroding.					
13b	$AI \rightarrow AI^{3+} + 3e^{-}$	Electrons are always on the right of an equation to be a corrosion reaction. The data book always list equations as reduction reactions with electrons on the left of the equation. The equation is flipped to become an oxidation reaction.					
	Stops oxygen or	Both oxygen and water are required for corrosion to take place. Any					
13c	Stops water or	method which either oxygen or water (or both) getting to the metal					
	Stops oxygen & water						
14a(i)	Sulphuric acid	Acid + Metal Salt + Hydrogen Sulphuric acid + Magnesium magnesium sulphate + hydrogen					
14a(ii)	No more bubbling	Any answer from: No more bubbles of gas Solid left at bottom Unreacted magnesium left Magnesium stops reacting					
	Remove	Magnesium added to the sulphuric acid will continue to react until there is					
14a(iii)	(unreacted/excess)	no sulphuric acid left. At this point, all the additional magnesium added will lie on the bottom of the beaker as it is insoluble in water. Filtration will					
	magnesium	removed the solid from the liquid.					
14b	weak	The salt sodium ethanoate has pH=12 when dissolved in water. This is because it is a salt made from a strong alkali (sodium hydroxide) and a weak acid (ethanoic acid). The salt sodium citrate also has pH=12 when dissolved in water. We can conclude that the acid sodium citrate is made from (citric acid) is a weak acid.					
	More	Acid concentration of H ⁺ ions greater than concentration of OH ⁻ ions					
15a	hydrogen ions than	Neutral concentration of H ⁺ ions equal to concentration of OH ⁻ ions					
	hydroxide ions	Alkali concentration of H ⁺ ions less than concentration of OH ⁻ ions					
15b(i)	Starch	Starch solution turns blue/black in the presence of iodine. Starch solution is colourless when iodine is not present.					
		Ignore the first (rough) titration as it is to work out where the colour change will take place.					
15b(ii)	16.0	Ave titre = $\frac{15.9 + 16.1}{2} = \frac{32.0}{2} = 16.0 \text{ cm}^3$					
		Iodine n = v x c = 0.016 litres x 0.005 mol 1 ⁻¹ = 0.00008 mol					
	0.0032	$C_6H_8O_6$ + $I_2 \rightarrow C_6H_6O_6$ + 2HI					
15b(iii)		1mol 1mol 0.00008mol 0.00008mol					
		concentration = <u>no. of mol</u> = <u>0.00008 mol</u> = 0.0032mol l ⁻¹					
16a	pink	Ferroxyl indicator turns blue in the presence of Fe ²⁺ ions					
	۲	Ferroxyl indicator turns pink in the presence of OH- ions Electrons formed					
16b	left to right	in Beaker A (left) $40H \rightarrow 2H_2O + O_2 + 4e$					
100	(through wires)	Electrons travel to Beaker B (right) to be gained by Fe^{3+} $Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$					